Hypoglycemic Mechanism of <i>Tegillarca granosa</i> Polysaccharides on Type 2 Diabetic Mice by Altering Gut Microbiota and Regulating the PI3K-Akt Signaling Pathway

نویسندگان

چکیده

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease threatening human health. We investigated the effects of Tegillarca granosa polysaccharide (TGP) and determined its potential mechanisms in mouse model T2DM established through high-fat diet streptozotocin. TGP (5.1×103 Da) was composed mannose, glucosamine, rhamnose, glucuronic acid, galactosamine, glucose, galactose, xylose, fucose. It could significantly alleviate weight loss, reduce fasting blood glucose levels, reverse dyslipidemia, liver damage from oxidative stress, improve insulin sensitivity. RT-PCR western blotting indicated that activate phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders glucolipid metabolism resistance. increased abundance Allobaculum, Akkermansia, Bifidobacterium, restored microbiota intestinal tracts mice with T2DM, promoted short-chain fatty acid production. This study provides new insights into antidiabetic highlights as natural hypoglycemic nutraceutical.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell

Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of  Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...

متن کامل

Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice

Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...

متن کامل

Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway

Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Oligo-Porphyran Ameliorates Neurobehavioral Deficits in Parkinsonian Mice by Regulating the PI3K/Akt/Bcl-2 Pathway

Parkinson's disease (PD) is a neurodegenerative movement disorder that is caused by a selective loss of dopaminergic neurons. Current PD treatments provide symptomatic relief but do not prevent or decelerate disease progression. Previous studies have suggested that acetylated and phosphorylated porphyran, derived from Porphyra, produces a neuroprotective effect against 6-OHDA-induced damage. Du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Food Science and Human Wellness

سال: 2023

ISSN: ['2213-4530']

DOI: https://doi.org/10.26599/fshw.2022.9250072